
4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

Mission Statement: To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
 the developers and managers who want to keep up with rapid technology change.

from the editor
E d i t o r i n C h i e f : H a k a n E r d o g m u s n K a l e m u n R e s e a r c h n h a k a n . e r d o g m u s @ c o m p u t e r . o r g

T
ikiWiki, or Tiki in short, is a notable piece
of software. It’s open source, big, success-
ful, and widely used. Nothing too special
about that. But Tiki also embraces Erik Ray-
mond’s “bazaar” model (www.catb.org/~esr/
writings/cathedral-bazaar/cathedral-bazaar)

in the extreme. It’s not driven by a handful of core
developers, or supported by an ecosystem of third-

party contributions that plug in to
the core. It doesn’t have any sys-
tematic quality controls: no design
reviews, no testing, no real gate-
keepers, no architecture work-
shops, no imposed architecture,
nothing. It doesn’t have an ad hoc
steering committee making quasi-
binding decisions about what’s
important and what’s not, or
who’s allowed to touch what, or

veering the project strongly in this direction or that.
Granted, at any given time, it does have its vision-
aries, marketing czars, technical leaders, maxims of
development, best practices, and so on that provide
continuity, visibility, stability, and motivation. But
most remarkably, what Tiki has is a large, unre-
stricted contributor base, none of whom enjoys spe-
cial commit privileges. Yet Tiki works, despite the
software and the antiprocess used in developing it.

Did I just call it an antiprocess? Apologies! Of
course, there’s a process: it’s just not what we who
care about process and preach its virtues think
should prevail in a serious initiative. It represents the
odd data point, where our honorable assumptions
about the correlation between process and success
all go down the drain.

Tiki (http://tikiwiki.org) is ubiquitous, multi-
purpose, feature-rich collaboration software with

a wiki engine. It’s used in Web sites, both com-
mercial and nonprofit, in various ways: as a plain
wiki, a wiki on steroids, a content management
system, a groupware application, a Web applica-
tion, a Web portal, an issue-tracking system, a
form generator, a knowledge base, and combina-
tions thereof. A close colleague, Alain Desiléts,
first brought Tiki to my attention. Alain is a con-
tributor himself, and was amazed at how the Tiki
approach works on the scale that it does. To reas-
sure those who are unfamiliar with Tiki that it’s
not marginal software with marginal success, here
are some facts.

Tiki Facts
Tiki was first released in 2002 and has been under
active development for seven years. It now has more
than a million lines of PHP code and more than a
thousand features and configuration options. With
over 200 active source-code contributors, Tiki has
one of the largest open source teams in the world.
Tiki contributors are among the top 2 percent of all
project teams on Ohloh (an open source directory
recently acquired by SourceForge). It’s reported
that the Tiki code base typically receives over 20
commits a day. When I checked on 5 September, it
had had 18 commits over a two-day period, most
of them fixes, refactoring, and merges. That’s still
quite a lot of activity.

Tiki has over 700,000 downloads from Source-
Forge alone (not counting installs through Web
hosting services). But is there any evidence that
anybody important cares about Tiki? Yes. Mozilla
Firefox has adopted it for their official support site.
It’s included in the Fantastico script installation li-
brary, a standard control panel application offered
by most Web hosting services. Tiki is also one of

Hakan Erdogmus

A Process That Is Not

 November/December 2009 I E E E S O F T W A R E 5

the top 50 most popular applications on
Freshmeat. A Google search for “inurl:
tiki-index.php” returns over 37 million
hits, with every distinct hit indicating a
possible live install. Is this enough?

Observations at TikiFest
Upon Alain’s invitation, I attended a Tiki
coding spree, a TikiFest, on a sunny spring
day in Ottawa. Seven dedicated develop-
ers with laptops were gathered around a
large table in the bright downtown offices
of Code Factory, a nonprofit organization
supporting the local development com-
munity. Five were working alone. Alain
was paired with a developer from Ger-
many who was in Ottawa for a larger
occasion. The room was eerily quiet for
such an event, disturbed only by the oc-
casional whispering from the pair and the
odd question thrown at the group. There
were no stickies on the walls. The white
board was sparse, with some scribbling on
it. I had imagined a TikiFest room to look
like a project war room, like the ones you
would see in an agile environment. It did
not look like that.

Hovering around the seven develop-
ers was Marc Laporte, Tiki’s project ad-
ministrator since 2003. We started talk-
ing. I asked about his vision for Tiki.
Marc wants Tiki to evolve into a sort of
general-purpose Web-based operating sys-
tem, which we could install locally and ac-

cess through a browser. Good. I was more
interested in how the project was managed.

I asked about TikiFests and what the
community hoped to achieve in these
events. Marc said they’ve had about 35
TikiFests over the past five years. Some-
body initiates the event to work on a spe-
cific feature, refactoring, or release. The or-
ganizer advertises it. The events are open,
and any number of people can attend.
Sometimes they’re collocated with other,
larger happenings, like WikiSym (http://
wikisym.org). The philosophy is similar to
that of an unconference, such as the Bar-
Camp gatherings (“Unconferences Catch
On with Developers,” IEEE Software,
Nov./Dec. 2008).

The Tiki Way
The Tiki project has a soft organization
with no central authority yielding power.
Marc summarized it as bootstrapping the
“Wiki way” of working to develop soft-
ware collaboratively (The Wiki Way: Quick
Collaboration on the Web by Bo Leuf
and Ward Cunningham, Addison-Wesley,
2001). For software development, this phi-
losophy implies collaboration at a larger
scale than usual. And Marc is behind Tiki’s
“recruit early, recruit often” strategy, which
encourages open participation by as many
people as possible. The strategy applies in-
discriminately to code, documentation,
ideas, translation, and whatever else needs

FROM THE EDITOR

Kudos and Thanks
In this issue, editors Rebecca Wirfs-Brock and Robert Glass wrap up their two
hugely popular columns: Design and Loyal Opposition. I want to thank Rebecca
and Bob for writing thought-provoking articles and recruiting excellent guest
authors every so often. We will miss their columns, but we’re pleased both are
staying with us as members of the IEEE Software Advisory Board.

Also joining the Advisory Board are two new members: Ayse Basar Bener and
Douglas R. Vogel. Ayse switched to academia in 2002 after a 15-year career in
the finance and banking industries. She held senior executive positions lead-
ing large IT initiatives and managing IT operations before joining the faculty at
Bogazici University, Istanbul. Her current research focuses on empirical software
engineering and involves close interaction with industry. Doug is chair professor
of information systems at the City University of Hong Kong and an Association
for Information Systems Fellow. He began his professional career as a software
engineer in the aerospace industry and later served as a general manager in the
computer manufacturing industry. Doug’s interests bridge the business and aca-
demic communities on multiple continents and address interpersonal communica-
tion, group problem solving, cooperative learning, multicultural team productivity,
and knowledge sharing.

The Art of
Agent-Oriented
Modeling
Leon S. Sterling and Kuldar Taveter
“In The Art of Agent-Oriented Modeling read-
ers will find an answer: a thorough descrip-
tion of all the ideas behind agent- oriented
software engineering and a new approach
to modeling that can fit many different
methodologies. Far from being a painful
set of definitions and procedures, it will
be a pleasure to read.” — Maurizio Martelli,
Università di Genova
Intelligent Robotics and Autonomous Agents series
408 pp., 141 illus., $38 cloth

Metamodeling for
Method Engineering
edited by Manfred A. Jeusfeld,
Matthias Jarke, and John Mylopoulos
A practical guide to method engineering
based on metamodeling, with theoretical
foundations and case studies, suitable
for classroom use or as a reference for
practitioners.
Cooperative Information Systems series
424 pp., 154 illus., $55 cloth

The MIT Press

Visit our e-books store: http://mitpress-ebooks.mit.edu
To order call 800-405-1619 • http://mitpress.mit.edu

doing. Marc seems unconcerned about who
contributes and how qualified they are, so
long as smart, dedicated, and competent
people participate. On his tikiwiki.org user
page, he writes, “As Tiki is used more and
more, our exceptional dev team always rises
to the challenge.”

Another governing Tiki philosophy is
strong individual ownership. Each feature
is typically adopted by one or more con-
tributors. Experienced contributors band
together or help less experienced ones to
ensure that Tiki’s core features and cross-
cutting functionality continue to work
correctly. Marc characterizes the spirit
of the community as one “condemned to
work together.”

Requirements
Who decides how the application is ex-
tended and which features take priority?
Nobody in particular. A single, flat wish
list exists on the developer portal: anyone
can add a feature request to the list, and
anyone can pick any item from the wish
list and pursue it. Marc points out that
this unmanaged approach doesn’t lead
to duplication of similar features. The
culture enforces a practice of checking
what’s already been implemented before
embarking on a new pursuit. Such check-
ing is possible thanks to the extensive cen-
tral documentation (over 1,000 pages),
which, again, nobody in particular is re-
sponsible for. The documentation is con-
tributed by a large, decentralized body of
people. The end result is an application
extremely rich in built-in features without
much functional redundancy across them.
However, this result isn’t accidental: from
the get-go, Marc adds, Tiki was intended
to be an application with lots of features.

Marc is indeed on record about his un-
concern for feature bloat. He writes, “You
can add all you want as long as you make
it optional and it doesn’t break anything,”
and repeats the orientation set by founder
Luis Argerich: “With enough eyeballs
and adopt-a-feature, this is not a prob-
lem. People just activate what they need
anyway.”

Design
Tiki has no notable central design. It’s
pretty much a monolithic application. Fea-
tures are directly integrated into the core:
no fancy component or plug-in architecture

or capability to support external features.
Everything is contributed to a central re-
pository. The user gets everything but can
turn individual features on and off, or se-
lect a standard profile with the features that
best fit the purpose at hand. Marc thinks of
modern plug-in architectures as preludes for
“dependency hell.” He brags that by avoid-
ing dependency hell, the Tiki project can re-
lease everything every six months. Smaller
projects with lots of external features can
take up to a year for the dependents to catch
up: third-party contributions often eventu-
ally get abandoned for that reason.

The code base allegedly is structurally
stable: “The code base is in many ways
very different now than it was six years ago,
but the same underlying structure still pre-
vails.” I couldn’t find any documentation
on how to navigate this beast on the Tiki
developer portal. You’re strongly encour-
aged to participate in the mailing lists and
chat rooms and ask for help, but it pretty
much stops there. Apparently, this level of
support is enough, given the large number
of contributors.

When I ask about how the code’s integ-
rity is preserved, Marc states that code is
refactored only after it’s been around for a
long time, once the developers know what
it’s supposed to do and are convinced that
refactoring is needed. So it boils down to a
“if it’s not broken, leave it alone” philoso-
phy. None of the pep talk in my previous
column about architecting and architec-
ture (“Agile Meets Architecture,” IEEE
Software, Sept./Oct. 2009) matters here.
It’s a different world.

Quality
Quality is also self-regulated by the cul-
ture. The centralized code base and docu-
mentation are the focal point of all activ-
ity. Users need not worry about third-party
patches or updates to tens of plug-ins.
Contributors need not worry about exter-
nal dependencies to comply with, except
for standard platform components such as
MySQL and Apache.

Eric Raymond’s proposition “Given
enough eyeballs, all bugs are shallow” is
Tiki’s main arsenal. The “recruit early, re-
cruit often” strategy generates the needed
eyeballs. “Dogfooding” also helps: the
Tiki portal has been running Tiki for some
time. Nearly 18,000 registered members
make plenty of watchful eyes. A buggy fea-

6 I E E E S O F T W A R E

FROM THE EDITOREDITOR IN CHIEF

Hakan Erdogmus
hakan.erdogmus@computer.org

EDITOR IN CHIEF EMERITUS:
Warren Harrison, Portland State University

ASSOCIATE EDITORS IN CHIEF

Computing Now: Maurizio Morisio,
Politecnico di Torino; maurizio.morisio@polito.it

Design/Architecture: Uwe Zdun, Vienna Univ.
of Technology; zdun@infosys.tuwien.ac.at

Development Infrastructures: Martin Robillard,
McGill University; martin@cs.mcgill.ca
Distributed and Enterprise Software:
John Grundy, University of Auckland;

john-g@cs.auckland.ac.nz
Empirical Results: Forrest Shull, Fraunhofer

Center for Experimental Software Engineering,
Maryland; fshull@fc-md.umd.edu

Human and Social Aspects: Helen Sharp,
The Open University, London;

h.c.sharp@open.ac.uk
Management: John Favaro,
INTECS; john@favaro.net

Processes and Practices: Frank Maurer, Univer-
sity of Calgary; maurer@cpsc.ucalgary.ca

Programming Languages and Paradigms:
Laurence Tratt, Bournemouth University;

laurie@tratt.net
Quality: Annie Combelles, DNV/Q-Labs;

annie.combelles@dnv.com
Requirements: Neil Maiden, City University

London; cc559@soi.city.ac.uk
Ann Hickey, University of Colorado at Colorado

Springs; ahickey@uccs.edu

DEPARTMENT EDITORS

Bookshelf: Art Sedighi, SoftModule
Career Development: Philippe Kruchten,

University of British Columbia
Design: Rebecca J. Wirfs-Brock,

Wirfs-Brock Associates
Loyal Opposition: Robert Glass,

Computing Trends
On Architecture: Grady Booch, IBM

Pragmatic Architect: Frank Buschmann,
Siemens

Requirements: Neil Maiden,
City University London

Software Technology: Christof Ebert, Vector
Tools of the Trade: Diomidis Spinellis, Athens

Univ. of Economics and Business
User Centric: Jeff Patton, consultant

Voice of Evidence: Forrest Shull, Fraunhofer
Center for Experimental Software Engineering

ADVISORY BOARD

Frances Paulisch, Siemens (Chair)
Pekka Abrahamsson, Univ. of Helsinki

Jennitta Andrea, ClearStream Consulting
Elisa Baniassad,

Chinese University of Hong Kong
Ayse Basar Bener,

Bogazici University
J. David Blaine, consultant

Kaoru Hayashi, SRA
Simon Helsen, IBM Rational

Gregor Hohpe, Google
Steve McConnell, Construx Software

Grigori Melnik, Microsoft
Linda Rising, consultant

Wolfgang Strigel, consultant
Dave Thomas, Bedarra Research Labs

Douglas R. Vogel,
City University of Hong Kong

Markus Völter, consultant

 November/December 2009 I E E E S O F T W A R E 7

FROM THE EDITOR

ture is discovered quickly and gets fixed, if
it’s popular and used often enough. If it’s
not, the feature, and the bugs that came
with it, are condemned to die a death of dis-
use. If a new feature interferes with existing
popular features, the problematic feature is
likely to be removed if it can’t be fixed.

A spin-off to the “recruit early, recruit
often” strategy is to “commit early, com-
mit often.” Frequent and timely commits
provide fast feedback. The high commit
activity for bug fixes indicates that bugs
indeed get fixed. Or at least somebody is
aware and working on them.

When I inquire about testing, I get a
tired look from Marc. He’s been asked
this question before. He recites the “one-
million monkeys” metaphor. He mentions
the diligent eyeballs, dogfooding, spirit of
collaboration: “No technical problems can
survive if you work together.” And I’ve
heard that before. Marc states without
shame or hesitation that Tiki might have
more bugs by standard measures than any
other comparable application. However,
that’s a direct consequence of a deliberate
trade-off: a rich set of built-in features over
low overall bug density. But the bug den-
sity is not uniform with most popular fea-
tures being also the most stable and high-
est quality since they’re subject to the most
scrutiny.

Thanks to a rating system, users know
what they’re getting on a feature-by-
feature basis: the community evaluates
each feature continually, and the ratings
change over time. So at least the quality
is visible on a fine level. This visibility is
important for the users, who decide which
features to turn on and off.

Marc is admittedly worried about
quality when it comes to security flaws.
He doesn’t mention any specific measures.
He tells me that the biggest security flaws
were caused by the best developers, a con-
sequence of the best people coding more
and taking more risks.

Still no mention of projectwide tests,
projectwide testing strategy, or system-
atically advocated testing practice. Blame
my paranoid nature, but I’m not com-
pletely at ease.

An Alternative Perspective
My unruly tongue called what underlies the
development of Tiki an antiprocess. I have
already apologized for it, but I can do better.

If you just see the “have-nots,” your
reaction might be “How could this pos-
sibly work?” In reality, and on deeper ex-
amination, the Tiki project is still seriously
organized as most large open source proj-
ects are. It has a vision, a dedicated com-
munity, contribution principles, guidelines
for newbies, rules of engagement, sug-
gested development practices and patterns,
mentoring, a solid central infrastructure,
an issue-tracking system, extensive user
documentation, a feature list, a user rat-
ing system, and so on. And all these parts
work together to create something signifi-
cant that works. You might dismiss Tiki as
an application not intended for important
tasks. Therefore, you might think its us-
ers tolerate the lack of qualities expected
of worthier applications. Even if Tiki looks
less critical than some other large software
systems, with so many users and such wide
distribution, it’s probably used in many
contexts that support critical operations. I
don’t intend this comment as an advertise-
ment for Tiki. I know that it would be a
source of worry for many.

Before I close, let’s look at Tiki one last
time from the perspective of the seven di-
mensions in my essay “Essentials of Soft-
ware Process” (IEEE Software, July/Aug.
2008). Tiki’s governance approach would

score fairly well in four of those seven di-
mensions. The Tiki way clearly supports
human centricity, pragmatism, empiri-
cism, and experimentation. Value ori-
entation is partially addressed: the Tiki
way would probably fair badly in terms
of efficiency (as would most open source
projects that don’t operate under limited
resource constraints) but well in terms of
end-user value (users ultimately decide
what stays in, their wishes are visible,
and they get what they collectively want
fast). As for the remaining dimensions—
technical orientation and discipline—they
would be a hard sell for the Tiki way. Still,
not so bad for something that I called an
antiprocess.

T he future of Tiki isn’t certain. I don’t
know how much longer its purely or-
ganic philosophy is sustainable. The

Tiki way has its caveats, some pretty se-
vere, but Tiki has been around longer than
a lot of other software. It works. Many
people use it every day. It supports the de-
velopment of one of the most pervasive
pieces of software. Given these facts, the
seven essentials I espoused don’t appear to
be universal, necessary conditions after all.
But I knew that, even if I might not have
said it before.

The University of Washington Bothell
Assistant Professor — Software Engineering

The Computing and Software Systems Program at the University of Washington
Bothell (UWB) invites applications for a tenure track Assistant Professor position with
expertise in Software Engineering to begin fall 2010. All University faculty engage in
teaching, research, and service. Areas of research and teaching interest include, but are
not limited to: Requirements Engineering, Quality Assurance, Testing Methodologies,
Software Development Processes, Software Design Methodologies, Software Project
Management, and Collaborative and Team Development.

The Bothell campus of the University of Washington was founded in 1990 as an
innovative, interdisciplinary campus within the University of Washington system —
one of the premier institutions of higher education in the US. Faculty members have
full access to the resources of a major research university, with the culture and close
relationships with students of a small liberal arts college.

Required qualifications for the position include an earned doctorate in computer
science, software engineering, or another relevant technical field, along with a
body of scholarship, or demonstrated promise for future work, that warrants UWB
appointment at the rank of Assistant Professor, and demonstrated commitment to
excellence in undergraduate and graduate education.

To apply, please send a cover letter, curriculum vitae, a list of at least three professional
references including contact information, a statement of teaching philosophy, evidence
of teaching effectiveness, and a research plan to css-search@uwb.edu. Review of
applications will begin on November 15, 2009; the position will remain open until
filled. For additional information, please see our website at http://www.uwb.edu/CSS/.

The University of Washington, Bothell is an affirmative action, equal opportunity employer.

